-
Dyadic expansion with R
2016-08-08
SourceWe provide a function that computes the dyadic representation of a real number in the interval \([0,1]\). Then we give an implementation of two transformations of the set \({\{0,1\}}^\mathbb{N}\) which are well-known in ergodic theory: the dyadic odometer and the Pascal transformation. For each of these transformations, we plot the graph of the conjugate transformation of \([0,1]\) obtained by the dyadic representation.
Dyadic expansion
Every real number \(u \in [0,1]\) has a dyadic expansion (or binary expansion): \[ u = \frac{\epsilon_1}{2} + \frac{\epsilon_2}{2^2} + \frac{\epsilon_3}{2^3} + \ldots \] where \(\epsilon_i=0\) or \(1\). We say that the sequence \((\epsilon_1, \epsilon_2, \ldots)\) is the dyadic representation of \(u\).
The
num2dyadic
function below returns the dyadic representation of \(u \in [0,1]\).num2dyadic <- function(u, nmax=1024L){ out <- integer(nmax) i <- j <- 0L while(u>0 && i<nmax){ j <- 1L + max(0L,floor(-log2(u*(1+.Machine$double.eps^.5)))) if(i+j <= nmax){ i <- i + j out[i] <- 1L u <- 2L^j*u - 1L }else{ i <- nmax } } return(out[1:i]) }
The
dyadic2num
function below does the reverse action:dyadic2num <- function(d) sum(d/2L^(seq_along(d)))
Let us check that the dyadic representation of \(0.75 = \frac{1}{2}+\frac{1}{4}\) is \((1,1)\):
num2dyadic(1/2+1/4) ## [1] 1 1
The real number \(u=0.2\) has the infinite periodic dyadic representation \((0, 0, 1, 1, 0, 0, 1, 1, \ldots)\). The
num2dyadic
function applied to \(0.2\) returns only the first \(54\) digits of its dyadic representation:( d <- num2dyadic(0.2) ) ## [1] 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 ## [36] 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 length(d) ## [1] 54
But it makes no difference for R:
dyadic2num(d) == 0.2 ## [1] TRUE
The dyadic odometer
The dyadic odometer is the transformation \(O\) of the set \({\{0,1\}}^{\mathbb{N}}\) defined by \(O(d) = d + (1, 0, 0, \ldots)\), where “\(+\)” is the addition \(\bmod\, 2\) with carry to the right.
The
odometer
function below is an implementation of the dyadic odometer and its inverse (optionimage="backward"
).odometer <- function(d, image=c("forward", "backward")){ image <- match.arg(image) if(image=="forward"){ if(all(d==1L)){ d <- c(rep(0L, length(d)), 1L) }else{ k <- which.min(d) d[1:k] <- 1L-d[1:k] } } if(image=="backward"){ if(all(d==0L)){ d <- c(rep(1L, length(d)), 0L) }else{ k <- which.max(d) d[1:k] <- 1L-d[1:k] } } return(d) }
Using the dyadic representation, the odometer also defines a map from the interval \([0,1]\) to itself. We plot its graph below:
par(mar=c(4,4,2,2)) u <- seq(0, 0.995, by=0.005) Ou <- sapply(u, function(u) dyadic2num(odometer(num2dyadic(u)))) plot(u, Ou, xlab="u", ylab="O(u)", xlim=c(0,1), ylim=c(0,1), pch=19, cex=.25, pty="s", xaxs="i", yaxs="i") grid(nx=10)
The Pascal transformation
The Pascal transformation \(P\) is defined for every \(d \in {\{0,1\}}^{\mathbb{N}}\) except when \(d=000\ldots\) or when \(d\) has the form \(d=0^i111\ldots\) (\(i\geq 0\)). Such a \(d\) has the form \(d= 0^m1^k10x\) where \(m,k \geq 0\) and \(x \in {\{0,1\}}^{\mathbb{N}}\), and then the image of \(d\) by the Pascal transformation is \[ P(0^m1^k10x) = 1^k0^m01x. \] The case when \(d=0^i111\ldots\) does not occur for us since we deal with finite sequences only. One naturally extends the Pascal transformation to include the case \(d=000\ldots\) by setting \(P(000\ldots) = 000\ldots\).
pascal <- function(d){ if(all(d==0L)) return(0L) i <- which.max(d) m1 <- i-1L d0 <- c(d, 0L) k1 <- which.min(d0[-(1:i)])-1L begin <- c(rep(1L, k1), rep(0L, m1+1L), 1L) if(length(d)==m1+k1+1L) d <- begin else d[1L:(m1+k1+2L)] <- begin return(d) }
By the dyadic representation, the Pascal transformation also defines a map from the interval \([0,1)\) to itself, whose graph is plotted below:
par(mar=c(4,4,2,2)) u <- seq(0, 1-1/2^10, by=1/2^10) Pu <- sapply(u, function(u) dyadic2num(pascal(num2dyadic(u)))) plot(u, Pu, xlab="u", ylab="P(u)", xlim=c(0,1), ylim=c(0,1), pch=19, cex=.25, pty="s", xaxs="i", yaxs="i") grid(nx=10)