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Stéphane Laurent

May 22, 2016

Abstract

Given an adic transformation S on the path space of a Bratteli graph and an automor-
phism T of a Lebesgue, we define a filtration whose tail σ-field is the (T × S)-invariant
σ-field. Considering the standardness property of this filtration provides a generalization
of the scale of an automorphism as defined in [5].
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1 Introduction
For a given adic transformation S acting on the set of infinite paths Γ of a Bratteli graph, one
can straightforwardly associate a filtration on Γ whose tail σ-field is the S-invariant σ-field.
When, in addition, an invertible measure-preserving transformation T is given, we show how to
define a filtration whose tail σ-field is the (T ×S)-invariant σ-field. This construction was done
in [5] in the case when S is an ordinary odometer, and considering the standardness property
of this filtration yields a generalization of the scale of an automorphism as defined in [5].

2 Filtration associated to an adic transformation
Consider an adic transformation S acting on the set of infinite paths Γ of a Bratteli graph,
preserving a probability measure µ on Γ. In this section we introduce the sequence of measurable
partitions and the corresponding filtration on the probability space Γ.
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We consider that the root level of the graph is graded by the index n = 0 and the subsequent
levels are graded by n = −1, n = −2, . . .. The example of the golden graph is shown on Figure 1.

The usual labels on the arcs of a Bratteli graph, such as the one shown on Figure 1(a),
provide, for each vertex vn at a level n, an ordering of the arcs between vn and the vertices
connected to vn at level n − 1. The labels shown on Figure 1(b) are obtained by considering
the other direction: they provide, for each vertex vn−1 at a level n− 1, an ordering of the arcs
between vn−1 and the vertices at level n connected to vn−1. After a choice of such labels, we
denote by εn(γ) the label of the edge connecting vn−1(γ) to vn(γ).

A path γ ∈ Γ is a sequence of arcs γ = (γ0, γ−1, . . .), where γn connects a vertex at level n
to a vertex at level n− 1. Note that γ is determined by (γ−1, γ−2, . . .) when there is a unique
arc between each vertex at level n = −1 and the root vertex at level n = 0.

We denote by vn(γ) the vertex at level n through which passes a path γ. The dimension of
a vertex v, that is to say the number of paths connecting v to the root vertex, is denoted by
dim(v), and we denote by dn(γ) = dim

(
vn(γ)

)
the dimension of the vertex at level n through

which passes the path γ.

∅

2 1

1 2

2 1

1 2

2 1

1 0

0 0 1

1 0 0

0 0 1

1 0 0

n = −1

n = 0

n = −2

n = −3

n = −4

n = −5

(a) Usual labels on the arcs

∅

2 1

1 2

2 1

1 2

2 1

0 0

0 1 0

0 0 1

0 1 0

0 0 1

(b) Order labels εn on the arcs

Figure 1: Golden graph

2.1 The sequence of measurable partitions ζ
There is an increasing sequence of measurable partitions (ζn)n≤0 on (Γ, µ), defined by

γ
ζn∼ γ′ ⇐⇒ γk = γ′k for every k ≤ n .

The partition ζ0 is the partition into singletons. The partition ζ−1 is also the partition into
singletons when there is a unique arc between each vertex at level n = −1 and the root vertex
at level n = 0.

The ζn-equivalence class ζn(γ) consists of dn(γ) elements. These elements are ordered: there
is one element in ζn(γ), denoted by γ̄n, such that

ζn(γ) = {γ̄n, Sγ̄n, . . . , Sdn(γ)−1γ̄n} .

We consider γ̄n as the ζn-representative of γ.
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Figure 2: A ζ−5-equivalence class

The increasing property of (ζn)n≤1 provides a structure on the ζn-equivalence classes: a
ζn-equivalence class is a union of ζn+1-equivalences classes. This is illustrated on Figure 2 for
the case of the golden graph. The labels on the edges of the tree shown on this figure are the
labels εn also shown on Figure 1(b). The label εn(γ) between level n and level n + 1 indicates
the location of ζn+1(γ) as a block of ζn(γ).

Thus, γ̄n = S−kn(γ)γ where the nonnegative integer kn(γ) is a function of (γ0, γ−1, . . . , γn),
and

ζn(γ) = {S−kn(γ)γ, S−kn(γ)+1γ, . . . , S−kn(γ)+dn(γ)−1γ}.

More precisely, knowing the vertex vn(γ), the integer kn(γ) is a one-to-one function of
(
εn+1(γ), . . . , ε0(γ)

)
.

0 1

v0 = ∅

γ1− θ

0 1− θ

v−1 = 1

1

v−1 = 2

γθ

θ 1− θ

v−2 = 2

0/1

1

θ

v−2 = 1

γ

Sγ

2θ

θ 1− θ

v−3 = 1

2θ

v−3 = 2

γ

Sγ

n = 0

n = −1

n = −2

n = −3

Figure 3: Golden towers

The adic transformation on the path space of a Bratteli graph
is a representation of a cutting-and-stacking construction. The
cutting-and-stacking construction corresponding to the adic trans-
formation on the golden graph is shown on Figure 3. The ζn-
equivalence class ζn(γ) of γ is shown by the blue points on this
figure. The ζn-representative γ̄n of γ corresponds to the point in
the base of the tower. For the example shown on Figure 3, one has
k0(γ) = k−1(γ) = k−2(γ) = 0 and k−3(γ) = 1.
Lemma 1. For almost γ ∈ Γ, kn(γ)→∞ and −kn(γ) + dn(γ)→
∞.

Proof. The integer kn(γ) increases as n decreases to −∞. If
kn(γ)→ j <∞, that is to say kn(γ) = j for n small enough, then
S−jγ belongs to the set of minimal paths of Γ, and this set has
measure 0. Thus the set where kn(γ)→ j has measure 0 for every
j, therefore the set where kn(γ) 6→ ∞ has measure 0 by countable
additivity. In the same way, the set where −kn(γ) + dn(γ) 6→ ∞
has measure 0 because the set of maximal paths of Γ has measure
0.

Note that the sequence
(
vn(γ), εn(γ)

)
n≤n0

determines the path
γ truncated at level n0. In other words it determines the ζn-
equivalence class ζn(γ). We will come back to the above points
in the next section, in the language of σ-fields.
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2.2 The filtration F
One gets a filtration (Fn)n≤0 by defining the σ-field Fn as the one generated by the measurable
partition ζn. Here, a path γ ∈ Γ is considered as the actual point taken at random in the
probability space. Thus the σ-field Fn is Fn = σ(Rn) where we denote by Rn the random
variable whose value at γ is the ζn-representative γ̄n of γ. The random variable R0 is a path
taken at random according to µ. Note that σ(Rn) ⊃ σ(Rn−1) because γ̄n determines the path
γ truncated at n.

In the previous section, we introduced the integer kn(γ) such that γ̄n = S−kn(γ)γ. Here we
consider kn as random variable but we use the notation Kn instead of kn. Thus Rn = S−KnR0 .

We also introduced the notations vn and εn in the previous section. Here vn and εn are
random variables, and we use the notation Vn instead of vn.

Thus the filtration F is generated by the stochastic process (Vn, εn)n≤0:

Fn = σ(Vm, εm;m ≤ n) .

The random variable εn+1 is a ”novation” from Fn to Fn+1, that is to say Fn+1 = Fn∨σ(εn+1),
since Vn+1 is a function of Vn and εn+1.
Lemma 2. The random variable εn+1 is conditionally independent of Fn given Vn.

Proof. Given Fn, the random variable εn+1 is the label of an arc connecting the vertex Vn to a
vertex at level n+ 1.

Conditionally to Vn, the random integer Kn is a one-to-one function of (εn+1, . . . , ε0), and
it has the uniform distribution on {0, . . . , dim(Vn) − 1}. This is the centrality property of µ.
Because of this property, the conditional law of Vn+1 given Vn is given by

Pr(Vn+1 = vn+1 | Vn = vn) = m(vn, vn+1)dim(vn+1)
dim(vn)

where m(vn, vn+1) is the number of edges connecting vn and vn+1.
Observe that Rn+1 = SKn−Kn+1Rn and, conditionally to Vn, the nonnegative integer Kn −

Kn+1 is a one-one function of εn+1. Thus, conditionally to Vn, the random integer Kn has
always an expression of the form Kn = ∑n+1

k=0 fk(εk).

2.3 Example: the golden graph
The random integer Kn has a very convenient expression for the case of the adic transformation
on the golden graph with our choice of the labels shown on Figure 1(b):

Kn = εn+1fn+1 + . . .+ ε−1f−1(+ε0f0).
where f0 = 0, f−1 = f−2 = 1, f−3 = 2, . . . are the Fibonacci numbers. Here its expression does
not depend on Vn, but its distribution does.

There is no multiple edges in this graph, therefore the filtration F is generated by the
stochastic process (Vn)n≤0. Denoting by φ the golden number, the law of (Vn)n≤0 is given by:
• V0 = ∅;

• for n ≤ −1, Vn takes the value 1 or 2 and Pr(Vn = 2) = fn
fn+φfn−1

=: pn;

• The transition matrix from Vn to Vn+1 is

Vn

Vn+1 1 2

1 fn/fn−1 fn+1/fn−1
2 1 0
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2.4 Example: the Chacon graph
As another example, consider the Chacon graph shown on Figure 4 which also shows our choice
of the labels on the arcs. For this example, Kn = ∑n+1

k=0 fk(εk), with
fn(0) = 0
fn(1) = hn

fn(2) = 2hn
fn(3) = 2hn + 1

.

where hn = 3|n|−1
2 is the dimension of the vertex 1 at level n.

The law of the process (Vn, εn)n≤0 is given by:

• V0 = ∅;

• for n ≤ −1, Vn takes the value 1 or 2, and Pr(Vn = 2) = 1/3|n|;

• εn = 0 and Vn = 2 if Vn−1 = 2;

• conditionally to Vn−1 = 1, the label εn of the edge between Vn−1 and Vn equals 2 with
probability 1/hn−1, or equals a value in {0, 1, 3} with probability hn/hn−1.

∅

1 2

1 2

1 2

1 2

0 0

0 1 3 2 0

0 1 3 2 0

0 1 3 2 0

n = −1

n = 0

n = −2

n = −3

n = −4

(a) Chacon graph

∅

1 1

4 1

13 1

40 1

1 1

1/4 1/4 1/4 1/4 1

4/13 4/13 4/13 1/13 1

13/40 13/40 13/40 1/40 1

(b) Dimensions and transition probabilities

Figure 4: Chacon graph

Later, in order to prove Proposition 2, we will use the following property of the Chacon
transformation, which is easy to see with the help of Figure 5. Let I = {γ | v−1(γ) = 2} be the
set of infinite paths which pass through the vertex 2 at level n = −1. If Vn = 1, then

(1Rn∈I ,1SRn∈I , . . . ,1Shn−1Rn∈I) = c0c1 . . . chn−1 (1)

where c = (0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0 . . .) is the limit of the words wk obtained by initially
setting w0 = 0 and recursively setting wk+1 = wkwk1wk. We call c the Chacon word.
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V−3 = 1

1 1 2 1

1 1 2 1 1 1 2 1 2 1 1 2 1

0 1 2 3

0 1 2 3 0 1 2 3 0 0 1 2 3

n = −1

n = −2

n = −3

Figure 5: The process (Vn, εn) for the Chacon graph

3 Filtration associated to an adic transformation and an
automorphism

Now, in addition to the adic transformation S, let T be an invertible measure-preserving trans-
formation on a Lebesgue space (X , ν).

We will define a filtration G locally isomorphic to F , whose tail σ-field G−∞ is the invariant
σ-field of the product transformation T × S.

3.1 The sequence of measurable partitions ξ
Here one defines an increasing sequence of measurable partitions (ξn)n≤0 locally isomorphic to
the elementary sequence (ζn)n≤0 associated to S.

For two paths γ, γ′ in the same S-orbit, denote by k(γ, γ′) the integer such that γ′ = Sk(γ,γ′)γ.
Thus k(γ, γ′) = kn(γ)− kn(γ′) when γ

ζn∼ γ′. Then define the measurable partition ξn by

(x, γ) ξn∼ (x′, γ′) ⇐⇒ γ
ζn∼ γ′ and x′ = T k(γ,γ′)x .

That is, the ξn-equivalence class of (x, γ) is

ξn(x, γ) =
{

(x̄n, γ̄n), (T x̄n, Sγ̄n), . . . , (T dn(γ)−1x̄n, S
dn(γ)−1γ̄n)

}
where x̄n = T−kn(γ)x and, as already seen, γ̄n = S−kn(γ)γ is the ζn-representative of γ. It is
clear that ξn � ξn+1. We consider (x̄n, γ̄n) as the ξn-representative of (x, γ).
Remark 1. It is known that the set-theoretic intersection ∩n≤0ζn is the orbital partition of S. As
we will see (Proposition 1), the measurable hull of the tail partition ∩ξn is the invariant σ-field of
T × S. But I do not know whether ∩ξn is the orbital partition of T × S.

3.2 The filtration G
We take a random variable X0 distributed on X according to ν and we set Xn = T−KnX0 ,
similarly to Rn = S−KnR0.

Thus (Xn, Rn)(x, γ) = (x̄n, γ̄n), and setting Gn = σ(Xn, Rn) then Gn = σ(ξn) is the σ-field
corresponding to the measurable partition ξn.

Note that Xn ∼ ν for every n ≤ 0 because Kn is independent of X0.
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The filtration G = (Gn)n≤0 is generated by the stochastic process (Xn, Vn, εn)n≤0:

Gn = σ(Xm, Vm, εm;m ≤ n) .

X−5 = x, V−5 = 1

x T 5x

x T 2x T 5x

x T 2x T 4x T 5x T 7x

x Tx T 2x T 3x T 4x T 5x T 6x T 7x

5/8 3/8

2/5 3/5 1

1 2/3 1/3 2/3 1/3

1/2 1/2 1/2 1/2 1 1/2 1/2 1

x

1

Tx

1

T 2x

1

T 3x

1

T 4x

1

T 5x

1

T 6x

1

T 7x

1

Figure 6: The process (Xn, Vn) for the golden graph

Lemma 3. The following properties hold:

1. The random integer Kn is conditionally independent of Gn given Vn (equivalently, (εn+1, . . . , ε0)
is conditionally independent of Gn given Vn because Kn is a one-to-one function of (εn+1, . . . , ε0)
given Vn).

2. εn+1 is a ”novation” from Gn to Gn+1, that is to say Gn+1 = Gn∨σ(εn+1), and the filtration
F is immersed in G.

Proof. Given Gn, the random integer Kn corresponds to a path connecting the vertex Vn to
the root vertex. That shows the conditional independence. As seen before, Kn − Kn+1 is,
conditionally to Vn, a one-to-one function of εn+1. Since Xn+1 = TKn−Kn+1Xn, that shows the
equality Gn+1 = Gn ∨ σ(εn+1). The immersion stems from the fact that εn+1 is also a novation
from Fn to Fn+1.

As a consequence, the process (Xn, Vn, εn)n≤0 is Markovian.
Lemma 4. Xn ⊥⊥ Fn for every n ≤ 0.

Proof. Take f ∈ L1. Then

E
[
f(Xn) | Fn

]
= E

[
f(T−KnX0) | Fn

]
.

Since Kn is F0-measurable and X0 ⊥⊥ F0,

E
[
f(T−KnX0) | Fn

]
= E

[
h(Kn) | Fn

]
where h(k) = E

[
f(T−kX0)

]
. But h(k) = E

[
f(X0)

]
= E

[
f(Xn)

]
since T preserves the law of

X0.
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Therefore the law of the process (Xn, Vn, εn)n≤0 can be described as follows:

• (Vn, εn)n≤0 is a path taken at random in Γ according to µ;

• Xn ⊥⊥ (Vn, εn);

• εn+1 is conditionally independent of Gn given Vn;

• Xn+1 = TKn−Kn+1Xn.

Proposition 1. The tail σ-field G−∞ is degenerate if and only if T × S is ergodic. More
precisely, G−∞ equals the (T × S)-invariant σ-field.

Proof. Denote by I the (T × S)-invariant σ-field. Since the pair (X0, R0) generates G0, the
degeneracy of G−∞ is equivalent to the L1-convergence of E

[
f(X0, R0) | Gn

]
to E

[
f(X0, R0) | I

]
for every bounded measurabe function f .

Recall that X0 = TKnXn and R0 = SKnRn. Conditionally to Gn, the random integer Kn

has the uniform distribution on
{

0, . . . , dim(Vn)− 1
}

, therefore

E
[
f(X0, R0) | Gn

]
= 1

dim(Vn)

dim(Vn)−1∑
k=0

f
(
T kXn, S

kRn

)

= 1
dim(Vn)

dim(Vn)−1∑
k=0

f
(
T kT−KnX0, S

kS−KnR0
)
.

Now, write

dim(Vn)−1∑
k=0

f
(
T kT−KnX0, S

kS−KnR0
)

=
dim(Vn)∑
M=1

dim(Vn)−1∑
k=0

f
(
T kT−MX0, S

kS−MR0
)1Kn=M .

and denote by E(f | I) the conditional expectation of f given I.
Let ε > 0. By the ergodic theorem, for every integer N large enough and for every pair of

random variables (U, V ) ∼ ν⊗µ, the average 1
N

(∑N−1
k=0 f

(
T kU, SkV

))
is ε-close in L2(ν⊗µ) to

E(f | I)(U, V ). For n large enough, one can apply this fact to U = T−MX0 and V = S−MR0
and N = dim(Vn), and one gets that the average

1
dim(Vn)

dim(Vn)−1∑
k=0

f
(
T kT−MX0, S

kS−MR0
)

is ε-close in L2(ν ⊗ µ) to E(f | I)(T−MX0, S
−MR0) = E(f | I)(X0, R0).

Finally, using the Cauchy-Schwarz inequality,

E
[∣∣∣E[f(X0, R0) | Gn

]
− E(f | I)(X0, R0)

∣∣∣] ≤ ε,

and the proof is over.

Remark 2. For people who deal with the filtration G on an abstract probability space, the equality
is G−∞ = (X0, R0)−1(I), where I is the (T × S)-invariant σ-field.
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3.3 An application of the tail σ-field
As an application of Proposition 1, we provide in Proposition 2 a weighted ergodic average. We
will use the following equality, seen in the proof of Proposition 1:

E
[
f(X0, R0) | Gn

]
= 1

dim(Vn)

dim(Vn)−1∑
k=0

f
(
T kXn, S

kRn

)
. (2)

Proposition 2. Let c be the Chacon word defined below equality (1). Define the weights

an,k =


3
hn
ck if 0 ≤ k ≤ hn − 1

0 if k ≥ hn

Let T be an invertible measure-preserving transformation of a Lebesgue space (X , ν). For g ∈
L1(ν), define the weighted average

Sn(g)(x) = 3
hn

hn−1∑
k=0

ckg(T kx) =
∞∑
k=0

an,kg(T kx).

Then Sn(g)→ E(g | I) in probability, where I is the T -invariant σ-field.
We give two lemmas before proving the previous proposition.

Lemma 5. On the same probability space, let (An) and (Bn) be two sequences of random
variables and (En) be a sequence of events. Set Yn = An1En +Bn1Ecn. Assume that

• An ⊥⊥ En;

• Pr(En)→ p > 0;

• Yn → Y > 0 in probability.

Then An → Y in probability.

Proof. This follows from

Pr
(
|An − Y | > ε

)
=

Pr
(
|An − Y | > ε,En

)
Pr(En) =

Pr
(
|Yn − Y | > ε,En

)
Pr(En) ≤

Pr
(
|Yn − Y | > ε)

Pr(En) .

Lemma 6. Let S and T be two invertible measure-preserving transformations. If S is weakly
mixing, then the (T × S)-invariant σ-field is the product of the T -invariant σ-field times the
trivial σ-field.

Proof. It is well known that the product of an ergodic transformation times a weakly mixing
transformation is ergodic. The lemma, which generalizes this result, can be proved by looking
at the space of ergodic components.

Proof of Proposition 2. Let S be the Chacon adic transformation, which is known to be weakly
mixing. Apply equality (2) to the function f(x, γ) = g(x)1x∈I where I = {γ | v−1(γ) = 2} was
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introduced before equality (1). This gives

E
[
g(X0)1R0∈I | Gn

]
= 1

dim(Vn)

dim(Vn)−1∑
k=0

g(T kXn)1SkRn∈I

=
 1
hn

hn−1∑
k=0

g(T kXn)1SkRn∈I

1Vn=1 + (g(Xn)1Rn∈I) 1Vn=2

=
 1
hn

hn−1∑
k=0

ckg(T kXn)


︸ ︷︷ ︸
=:An

1Vn=1 + (g(Xn)1Rn∈I)︸ ︷︷ ︸
=:Bn

1Vn=2,

where the last equality comes from equality (1).
By Proposition 1, E

[
g(X0)1R0∈I | Gn

]
→ E

[
g(X0)1R0∈I | G−∞

]
. We know that G−∞ =

I ⊗ {∅,Γ} by Lemma 6, therefore

E
[
g(X0)1R0∈I | G−∞

]
= Pr(R0 ∈ I)E

[
g(X0) | I ⊗ {∅,Γ}

]
= 1

3E(g | I).

Since Xn ⊥⊥ Vn (Lemma 4) and Pr(Vn = 1) → 1, one gets An → 1
3E(g | I) by virtue of

Lemma 5.

4 The scale of an automorphism
In the case when S is the usual adic transformation isomorphic to the (rn)-ary odometer, the
filtration G is the one introduced by Laurent in [5], whose standardness provides an equivalent
definition of the first definition of the scale of an automorphism originally introduced by Vershik
in [7]. This definition is the following one.

∅

1

1

1

0 1

0 1

0 1

n = 0

n = −1

n = −2

n = −3

Figure 7: The Bratteli graph of the dyadic odometer

Definition 1. Let G be the filtration of the previous section in the case when S is the (rn)-ary
odometer. The sequence (rn) belongs to the scale of T if G is standard.

In this case, it is shown in [5] that the tail σ-field G−∞ is degenerate if and only if T
∏0
k=n+1 rk

is ergodic for every n ≤ 0. This is equivalent to the ergodicity of the product of T with the
(rn)-ary odometer, as expected in view of Proposition 1.

The filtration G cannot be standard when G−∞ is not degenerate. A more general definition
is proposed in [5] to deal with this situation: say that (rn) belongs to the scale of T if G is

10



conditionally standard given G−∞. But this generalization of standardness has not been studied
yet in the literature.

Therefore, the definition of the scale can be generalized as follows.
Definition 2. Let G be the filtration of the previous section associated to an adic transformation
S and an automorphism T . Say that S is in the scale of T if G is standard, or, more generally, if G
is conditionally standard given G−∞.

In the case when S is the (rn)-ary odometer and T is a Bernoulli automorphism, stan-
dardness of G has been characterized in terms of the asymptotic behavior or the sequence (rn)
(see [1, 3, 5]).

5 Adic split-words processes
We use the notations of the previous section. Let P be a finite or countable partition of X . The
elements of P are labelled by the letters of an alphabet A. For x ∈ X we denote by P (x) ∈ A
the label of the block to which x belongs.

Define the random word Wn by

Wn = P (Xn)P (TXn) . . . P (T dim(Vn)−1Xn).

W−5 = abcdefgh, V−5 = 1

abcde fgh

ab cde fgh

ab cd e fg h

a b c d e f g h

5/8 3/8

2/5 3/5 1

1 2/3 1/3 2/3 1/3

1/2 1/2 1/2 1/2 1 1/2 1/2 1

a

1

b

1

c

1

d

1

e

1

f

1

g

1

h

1

Figure 8: The process (Wn, Vn) for the golden graph

Lemma 7. The filtration generated by (Wn, Vn, εn)n≤0 is immersed in G. It equals G when P
is a generating partition of T .

Proof. Denote by G ′ this filtration. The immersion follows from the fact that the random
variable εn+1 is a novation of G ′n to G ′n+1 and its conditional law given G ′n is the same as given
Gn (Lemma 3).

To show that G ′ = G when P is generating, it suffices to show that X0 is measurable with
respect to G ′0. Since Xn = T−KnX0, this follows from Lemma 1.

The filtration generated by (Wn, Vn, εn)n≤0 is also generated by (Wn, εn)n≤0 when two dif-
ferent vertices at each level n have different dimensions, because the length of Wn is dim(Vn).

The space of trajectories of a split-word process can be displayed on a Bratteli graph.
Figure 9 shows the case when S is the dyadic odometer, T is the Bernoulli shift on {a, b}Z and

11



∅
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b
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b
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b
b
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a
a

b
a
a
b

b
a
b
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b
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b
b

b
b
a
a

b
b
a
b

b
b
b
a

b
b
b
b

n = 0

n = −1

n = −2

Figure 9: (Wn, εn) when S is the dyadic odometer and T is the Bernoulli 2-shift

P is the usual generating partition according to the central coordiinate. This graph is called
the graph of ordered pairs by Vershik.

Note that W−1 = W0 when there is a unique edge between the root vertex and each vertex
at level −1 (that is to say when ε0 takes only one value). In the general situation, W0 is a
function of W−1 and ε0. Therefore one can set W0 = ∅ without changing the filtration. An
example is shown on Figure 10 for the case when S is the golden adic transformation, T is the
Chacon transformation, and P is the generating partition {[0, 2/3[, [2/3, 1[}.

∅

a b

a b aa ab ba

aaa aab aba baa bab aa ab ba

0
0
1

0 00 1 1

1
1 1

1
10 0 0

0

0

0 0

1

n = −3

n = −2

n = −1

n = 0

Figure 10: (Wn, εn) when S is the golden adic transformation and T is the Chacon transforma-
tion

Question 1. What is the adic transformation on these graphs? Since the tail σ-field is the (T×S)-
invariant σ-field, one could expect that the adic transformation is isomorphic to T × S. I believe it
is true.
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6 Example: the golden graph and the golden rotation
The filtration F was introduced in Section 2.3 in the case when S is the adic transformation
on the golden graph.

This adic transformation is isomorphic to the golden rotation on S1, with angle θ = 1
1+φ =

2
3+
√

5 .
For a given transformation T , the law of the stochastic process (Xn, Vn, εn)n≤0 generating

the filtration G is given by
Xn+1 = T εn+1fn+1Xn.

The product of a rotation with itself is not ergodic. Hence, in the case when T is the golden
rotation, the tail σ-field G−∞ is not degenerate. For this case, one can see that Xn almost surely
goes to a random variable X−∞ as n→ −∞. Indeed, first observe that

Xn+1 = Xn or Xn+1 = Xn + θfn+1.

But the distance between θfn and 0 in S1 is less than 1/fn−1, because of the inequality

|θfn − fn+2| ≤
1

fn−1
,

coming from the well-known results about continued fraction (the continued fraction expansion
of θ is [0, 2, 1, 1, . . .]). Therefore |Xn+1 − Xn| ≤ 1/fn, and Xn → X−∞ because 1/fn is the
general term of a convergent series. Of course X−∞ has the uniform distribution on S1, like
each Xn.
Question 2. Does G−∞ = σ(X−∞) ?
Question 3. Conditionally to X−∞, is the filtration G isomorphic to F ?

7 Example: the Chacon graph and Bernoulli automor-
phisms

7.1 The filtration G
In the case when S is the Chacon adic transformation, the filtration F was introduced in
Section 2.4.

The law of the process (Xn, Vn, εn)n≤0 generating the filtration G is given by (see Figure 11,
where a red box indicates Vn = 2):

• (Vn, εn)n≤0 has the law given in Section 2.4;

• Xn ∼ ν is independent of (Vn, εn);

• Xn+1 = T fn+1(εn+1)Xn (the fn are given in Section 2.4).

In this case, a split-word process (Wn, Vn, εn)n≤0 (Section 5) has the following dynamics (see
Figure 12). The length of the word Wn is hn if Vn = 1, and length 1 if Vn = 2. When Vn = 1,
we consider Wn as the concatenation of four subwords with respective lengths hn+1, hn+1, 1
and hn+1. Then Wn+1 is the subword of Wn selected by the value of εn+1.

The Chacon transformation S is known to be weakly mixing. This implies that T × S
is ergodic whenever T is ergodic, therefore the filtration G has a degenerate tail σ-field G−∞
whenever T is ergodic (Proposition 1).

We will prove the following result.

13



X−3 = x, V−3 = 1

x T 4x T 8x T 9x

x Tx T 2x T 3x T 4x T 5x T 6x T 7x T 8x T 9x T 10x T 11x T 12x

0 1 2 3

0 1 2 3 0 1 2 3 0 0 1 2 3

n = −1

n = −2

n = −3

Figure 11: (Xn, Vn, εn)

W−3 = abcdefghijklm, V−3 = 1

abcd efgh i jklm

a b c d e f g h i j k l m

0 1 2 3

0 1 2 3 0 1 2 3 0 0 1 2 3

n = −1

n = −2

n = −3

Figure 12: (Wn, Vn, εn)

Proposition 3. When T is a Bernoulli automorphism, the filtration G is not standard.
Hereafter we consider that T is a Bernoulli shift on a a countable alphabet A and that

(Wn, Vn, εn)n≤0 is the split-word process obtained with the partition of AZ according to the
central coordinate. Thus Wn is a word made of i.i.d. letters on A.

7.2 The process (W̃n, Ṽn, ε̃n)
Proposition 3 will be derived from the non-standardness of the filtration G̃ generated by the
following process (W̃n, Ṽn, ε̃n)n≤0 (see Figure 13), which is asymptotically the same as the process
(Wn, Vn, εn), in a sense that will be made precise in Section 7.3.

For every n ≤ −1, Ṽn is a constant random variable equal to 1, and Ṽ0 = ∅. The process
(ε̃n)n≤−1 is a sequence of independent random variables having the uniform law on {0, 1, 3},
and ε̃0 is a constant random variable equal to 0. The random variable W̃n is a random word of
length hn on A, made of i.i.d. letters, and it is independent of ε̃n. The random variable ε̃n+1 is
independent of G̃Gn, and W̃n+1 is the subword of W̃n selected by the value of ε̃n+1, in the same
way that Wn+1 is the subword of Wn selected by the value of εn+1.

Thus, (G̃n)n≤−1 is a 3-adic filtration: G̃n+1 = G̃n∨σ(ε̃n+1) and ε̃n+1 is independent of G̃n and
has a uniform distribution on a set with three elements.

We will see in Section 7.3 that the tail σ-field G̃−∞ is degenerate as a consequence of the
first point of Theorem 7.1.
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W̃−3 = abcdefghijklm, Ṽ−3 = 1

abcd efgh i jklm

a b c d e f g h i j k l m

0 1 2 3

0 1 2 3 0 1 2 3 0 0 1 2 3

n = −1

n = −2

n = −3

Figure 13: (W̃n, Ṽn, ε̃n)

Proposition 4. The filtration G̃ is not standard.

Proof. Let Ỹn be the word obtained by deleting the letters of W̃n shown in color on Figure 13.
These are the letters of W̃n which have a zero probability to be selected by the conditional law
L(W̃−1 | W̃n). The positions of these letters are given by the 1’s in the Chacon word introduced
after equality (1). The process (Ỹn, ε̃n)n≤−1 is a 3-adic split-word process with i.i.d. letters on
A. It is known that the filtration it generates is not standard (see [1, 3, 5]). This filtration is
immersed in G̃, therefore G̃ is not standard.

7.3 Closely joinable processes
In this section we provide Theorem 7.1 which is the tool with the help of which we will derive
Proposition 3 (non-standardness of G) from Proposition 4 (non-standardness of G̃).

When two random vectors (Xn)0≤n≤n0
and (Yn)0≤n≤n0

are defined on the same proba-
bility space and the filtrations they generate are jointly immersed, we will write and say
that

{
(Xn)0≤n≤n0
(Yn)0≤n≤n0

is a synchronous joining. That means, after introducing the σ-fields Bn =
σ(X0, . . . , Xn) and Cn = σ(Y0, . . . , Yn), that Bn+1 ⊥⊥Bn Bn ∨ Cn and Cn+1 ⊥⊥Cn Bn ∨ Cn.

When
{

(X′n)0≤n≤n0
(Y ′n)0≤n≤n0

is a synchronous joining in the situation when (X ′n)0≤n≤n0
is a copy of

a random vector (Xn)0≤n≤n0
and (Y ′n)0≤n≤n0

is a copy of a random vector (Yn)0≤n≤n0
, we also

say that
{

(X′n)0≤n≤n0
(Y ′n)0≤n≤n0

is a synchronous joining of (Xn)0≤n≤n0
and (Yn)0≤n≤n0

.

Definition 3. Let (Xn)n≤0 and (Yn)n≤0 be two stochastic processes. We say that they are closely
joinable if for every δ > 0 and for every M ≤ 0, there exists Nδ ≤M such that for every n0 ≤ Nδ

there exists a synchronous joining
{

(X′n)n0≤n≤Nδ
(Y ′n)n0≤n≤Nδ

of (Xn)n0≤n≤Nδ and (Yn)n0≤n≤Nδ such that

Pr(X ′Nδ = Y ′Nδ) > 1− δ.

Theorem 7.1. Let (Xn)n≤0 and (Yn)n≤0 be two Markovian stochastic processes, and denote
by F and G the filtrations they respectively generate. Assume (Xn)n≤0 and (Yn)n≤0 are closely
joinable.

1. The σ-fields F−∞ and G−∞ are equal.

2. The filtration F is I-cosy if and only if the filtration G is I-cosy.

We firstly prove the first point of this theorem.
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Proof of 1 in Theorem 7.1. To establish the claim, it suffices to show that the conditional law
L(XM | F−∞) is G−∞-measurable random variable for every integer M ≤ 0. To do so, we will
prove that the conditional expectation E

[
f(XM) | F−∞

]
can be made as L1-close as desired to

a G−∞-measurable random variable for any Borelian function f taking its values in [0, 1].
We set FM = f(XM). Let δ > 0 and N = Nδ ≤ M the integer provided by the joinability

assumption. One has E[FM | FN
]

= g(XN) for a certain Borelian function g taking its values
in [0, 1]. Take n0 ≤ N small enough in order that

E
[∣∣∣∣E[FM | Fn0 ]− E[FM | F−∞]

∣∣∣∣] ≤ δ and E
[∣∣∣∣E[g(YN) | Gn0

]
− E

[
g(YN) | G−∞

]∣∣∣∣] ≤ δ,

which is possibly by virtue of the theorem on reverse martingale convergence.
Now, take the joining provided by the joinability assumption and set F ′M = f(X ′M). One

has E
[∣∣∣g(X ′N)− g(Y ′N)

∣∣∣] ≤ δ. Therefore

E
[∣∣∣∣E[g(X ′N) | σ(X ′n0 , Y

′
n0)
]
− E

[
g(Y ′N) | σ(X ′n0 , Y

′
n0)
]∣∣∣∣] ≤ δ

because of the contractivity of the conditional expectation. By immersion,

E
[
g(X ′N) | σ(X ′n0 , Y

′
n0)
]

= E
[
g(X ′N) | σ(X ′n0)

]
= E

[
F ′M | σ(X ′n0)

]
and

E
[
g(Y ′N) | σ(X ′n0 , Y

′
n0)
]

= E
[
g(Y ′N) | σ(Y ′n0)

]
.

On the other hand,

E
[∣∣∣∣E[F ′M | σ(X ′n0)

]
− E

[
g(Y ′N) | σ(Y ′n0)

]∣∣∣∣] = E
[∣∣∣∣E[FM | σ(Xn0)

]
− E

[
g(YN) | σ(Yn0)

]∣∣∣∣]
= E

[∣∣∣∣E[FM | Fn0

]
− E

[
g(YN) | Gn0

]∣∣∣∣]
By combining the previous equalities and inequalities,

E
[∣∣∣∣E[FM | F−∞

]
− E

[
g(YN) | G−∞

]∣∣∣∣] ≤ 3δ,

and the proof is over.

The second point of the theorem will be proved with the help of the following lemma.

Lemma 8. Let
{

(Xn)0≤n≤n0
(Yn)0≤n≤n0

be a synchronous joining of two random vectors (Xn)0≤n≤n0
and

(Yn)0≤n≤n0
. One assumes that a synchronous joining

{
(X′n)0≤n≤n0
(X′′n)0≤n≤n0

of two copies of (Xn)0≤n≤n0

is given on some probability space. Then, on an enlargement of this probability space, there
exists a synchronous joining

{
(Y ′n)0≤n≤n0
(Y ′′n )0≤n≤n0

of two copies of (Yn)0≤n≤n0
such that

{
(X′n)0≤n≤n0
(Y ′n)0≤n≤n0

and{
(X′′n)0≤n≤n0
(Y ′′n )0≤n≤n0

are two copies of
{

(Xn)0≤n≤n0
(Yn)0≤n≤n0

.
Moreover, if X ′0 ⊥⊥σ(X′0)∩σ(X′′0 ) X

′′
0 , then Y ′0 ⊥⊥σ(X′0)∩σ(X′′0 ) Y

′′
0 .

Proof. In the proof, we will use the three following elementary facts about conditional inde-
pendence:

(i) If U ⊥⊥ A ⊃ B, then X ⊥⊥B A for any σ(B, U)-measurable r.v. X.

(ii) If U ⊥⊥ σ(B, X) then X ⊥⊥B U (hence X ⊥⊥B σ(B, U)).
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(iii) If B ⊂ A, then the two conditional independences Y ⊥⊥B∨σ(X) A and X ⊥⊥B A imply
Y ⊥⊥B A.

On the probability space of
{

(Xn)0≤n≤n0
(Yn)0≤n≤n0

, one can assume there exist some random variables
U0, . . ., Un0 such that

• Un ⊥⊥
(
(X0, U0), . . . , (Xn−1, Un−1), Xn

)
;

• Yn = fn
(
(X0, Y0), . . . , (Xn−1, Yn−1), Xn, Un

)
for some Borelian functions fn.

We denote by (E ′0, . . . , E ′n0) the filtration generated by (X ′n)0≤n≤n0
and by (E ′′0 , . . . , E ′′n0) the

filtration generated by (X ′′n)0≤n≤n0
.

On the probability space of
{

(X′n)0≤n≤n0
(X′′n)0≤n≤n0

, one can assume there are two copies U′ = (U ′0, . . . , U ′n0)
and U′′ = (U ′′0 , . . . , U ′′n0) of (U0, . . . , Un0) such that U′ ⊥⊥ U′′ and (U′,U′′) ⊥⊥ E ′n0 ∨ E

′′
n0 .

We set Y ′0 = f0(X ′0, U ′0) and Y ′′0 = f0(X ′′0 , U ′′0 ). Then it is not difficult to check the last point
of the lemma: Y ′0 ⊥⊥σ(X′0)∩σ(X′′0 ) Y

′′
0 if X ′0 ⊥⊥σ(X′0)∩σ(X′′0 ) X

′′
0 .

Now we recursively set

Y ′n = fn
(
(X ′0, Y ′0), . . . , (X ′n−1, Y

′
n−1), X ′n, U ′n

)
and

Y ′′n = fn
(
(X ′′0 , Y ′′0 ), . . . , (X ′′n−1, Y

′′
n−1), X ′′n, U ′′n

)
.

In this way, it is clear that
{

(X′n)0≤n≤n0
(Y ′n)0≤n≤n0

and
{

(X′′n)0≤n≤n0
(Y ′′n )0≤n≤n0

are two copies of
{

(Xn)0≤n≤n0
(Yn)0≤n≤n0

.
We define the filtrations (G ′0, . . . ,G ′n0) and (G ′′0 , . . . ,G ′′n0) by setting

G ′n = σ
(
(X ′0, Y ′0), . . . , (X ′n, Y ′n)

)
and G ′′n = σ

(
(X ′′0 , Y ′′0 ), . . . , (X ′′n, Y ′′n )

)
,

and the filtration (H0, . . . ,Hn0) by setting

Hn = (E ′n ∨ E ′′n) ∨ σ
(
(U ′0, U ′′0 ), . . . , (U ′n, U ′′n)

)
⊃ G ′n ∨ G ′′n.

By property (ii),
X ′n+1 ⊥⊥E ′n∨E ′′n Hn and X ′′n+1 ⊥⊥E ′n∨E ′′n Hn

and by the immersion property,

X ′n+1 ⊥⊥E ′n Hn and X ′′n+1 ⊥⊥E ′′n Hn (3)

Therefore
X ′n+1 ⊥⊥G′n Hn and X ′′n+1 ⊥⊥G′′n Hn (4)

because E ′n ⊂ G ′n ⊂ Hn and E ′′n ⊂ G ′′n ⊂ Hn.
By property (i),

Y ′n+1 ⊥⊥G′n∨σ(X′n+1) Hn and Y ′′n+1 ⊥⊥G′′n∨σ(X′′n+1) Hn,

and by (4) and property (iii),

Y ′n+1 ⊥⊥G′n Hn and Y ′′n+1 ⊥⊥G′′n Hn

and by the immersion property

Y ′n+1 ⊥⊥σ(Y ′0 ,...,Y ′n) Hn and Y ′′n+1 ⊥⊥σ(Y ′′0 ,...,Y
′′
n ) Hn.

Thus, we have proved that the four filtrations generated by (X ′n)0≤n≤n0
, (X ′′n)0≤n≤n0

, (Y ′n)0≤n≤n0
,

and (Y ′′n )0≤n≤n0
are jointly immersed in the filtration (Hn)0≤n≤n0

.
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Lemma 9. Let (Yn)n≤0 be a Markov process. For two integers n0 ≤ N < 0, let
{

(Y ′n)n0≤n≤N
(Y ′′n )n0≤n≤N

be a synchronous joining of two copies of (Yn)n0≤n≤N such that Pr(Y ′N 6= Y ′′N) < δ. Then it
is possible to extend this joining to a synchronous joining

{
(Y ′n)n0≤n≤0
(Y ′′n )n0≤n≤0

of (Yn)n0≤n≤0 such that
Pr(Y ′N 6= Y ′′N , . . . , Y

′
0 6= Y ′′0 ) < δ.

Proof. One can assume that Yn+1 = fn(Yn, Un+1) where (UN+1, . . . , U0) is a vector of indepen-
dent U(0, 1) random variables such that Un+1 ⊥⊥ (YN , UN+1, . . . , Un). On the other hand, on
the probability space of

{
(Y ′n)n0≤n≤N
(Y ′′n )n0≤n≤N

, one can assume there is a vector (ŪN+1, . . . , Ū0) of inde-
pendent U(0, 1) random variables which is independent of (Y ′n, Y ′′n )n0≤n≤N . Then we extend the
joining by recursively setting Y ′n+1 = fn(Y ′n, Ūn+1) and Y ′′n+1 = fn(Y ′′n , Ūn+1).

Lemma 10. Let G be the filtration generated by a Markov process (Yn)n≤0. Assume that for
any integer M ≤ 0 and any real number δ > 0, there exists two integers n0 ≤ Nδ ≤ M and
a synchronous joining

{
(Y ′n)n0≤n≤Nδ
(Y ′′n )n0≤n≤Nδ

of two copies of (Yn)n0≤n≤Nδ such that Y ′n0 ⊥⊥ Y ′′n0 and
Pr(Y ′Nδ 6= Y ′′Nδ) < δ. Then G is I-cosy.

Proof. In order for G to be I-cosy, it suffices that (YM , . . . , Y0) satisfies the I-cosiness criterion
for every M ≤ 0 (see [3]). By Lemma 9, the synchronous joining

{
(Y ′n)n0≤n≤Nδ
(Y ′′n )n0≤n≤Nδ

given by the

assumption can be extended to a synchronous joining
{

(Y ′n)n0≤n≤0
(Y ′′n )n0≤n≤0

of two copies of (Yn)n0≤n≤0

satisfying Pr(Y ′Nδ 6= Y ′′Nδ , . . . , Y
′

0 6= Y ′′0 ) < δ.
Now, we will construct two copies (Y ∗n )n≤0 and (Y ∗∗n )n≤0 of (Yn)n≤0, independent up to n0

and such that
{

(Y ∗n )n0≤n≤0
(Y ∗∗n )n0≤n≤0

is a copy of
{

(Y ′n)n0≤n≤0
(Y ′′n )n0≤n≤0

One can assume that

(Y ′n+1, Y
′′
n+1) = fn(Y ′n0 , Y

′′
n0 , . . . , Y

′
n, Y

′′
n , Un+1)

where Un+1 ⊥⊥ (Y ′n0 , Y
′′
n0 , Un0 , . . . , Y

′
n, Y

′′
n , Un) is U(0, 1). Then, given two independent copies

(Y ∗n )n≤n0
and (Y ∗∗n )n≤n0

of (Yn)n≤n0
, we recursively set

(Y ∗n+1, Y
∗∗
n+1) = fn(Y ∗n0 , Y

∗∗
n0 , . . . , Y

∗
n , Y

∗∗
n , Ūn+1)

where (Ūn0+1, . . . , Ū0) ⊥⊥ (Y ∗n , Y ∗∗n )n≤n0
is a vector of independent U(0, 1) random variables. In

this way, for n ≥ n0, one has

L(Y ∗n+1 | Y ∗m, Y ∗∗m ;m ≤ n) = L(Y ∗n+1 | Y ∗n0 , Y
∗∗
n0 , . . . , Y

∗
n , Y

∗∗
n ),

and L(Y ∗n+1 | Y ∗n0 , Y
∗∗
n0 , . . . , Y

∗
n , Y

∗∗
n ) = L(Y ∗n+1 | Y ∗n ) because

{
(Y ∗n )n0≤n≤0
(Y ∗∗n )n0≤n≤0

is a copy of
{

(Y ′n)n0≤n≤0
(Y ′′n )n0≤n≤0

.
Thus the two filtrations generated by (Y ∗n )n≤0 and (Y ∗∗n )n≤0 are jointly immersed, and that shows
that (YM , . . . , Y0) satisfies the I-cosiness criterion.

Now we prove the second point of Theorem 7.1.

Proof of 2 in Theorem 7.1. Assume F is I-cosy. Take an integer M ≤ 0. To prove the claim,
it suffices to show that (YM , . . . , Y0) satisfies the I-cosiness criterion with respect to G (see [3]).

Let δ > 0 and take the integerNδ ≤M provided by the joinability assumption (Definition 3).
The random variable XNδ satisfies the I-cosiness criterion with respect to F . Thus, one has

two jointly immersed copies (F ′n)n≤Nδ and (F ′′n)n≤Nδ of the filtration (Fn)n≤Nδ , independent up
to an integer n0 ≤ Nδ and such that Pr(X ′Nδ 6= X ′′Nδ) < δ.
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Thanks to the Markov property,
{

(X′n)n0≤n≤Nδ
(X′′n)n0≤n≤Nδ

is a synchronous joining of two copies of
(Xn)n0≤n≤Nδ .

Now, one has the joining
{

(Xn)n0≤n≤Nδ
(Yn)n0≤n≤Nδ

provided by the joinability assumption.

By Lemma 8, one has, on an enlargement of the probability space of
{

(X′n)n0≤n≤Nδ
(X′′n)n0≤n≤Nδ

, two

copies
{

(X′n)n0≤n≤Nδ
(Y ′n)n0≤n≤Nδ

and
{

(X′′n)n0≤n≤Nδ
(Y ′′n )n0≤n≤Nδ

of
{

(Xn)n0≤n≤Nδ
(Yn)n0≤n≤Nδ

such that
{

(Y ′n)n0≤n≤Nδ
(Y ′′n )n0≤n≤Nδ

is a synchronous
joining of (Yn)n0≤n≤Nδ and Y ′n0 ⊥⊥ Y ′′n0 . Clearly, Pr(Y ′Nδ 6= Y ′′Nδ) < 3δ. The result follows from
Lemma 10.

7.4 Proof of Proposition 3
Proposition 3 follows from Proposition 4, Theorem 7.1 and the following lemma.
Lemma 11. The Markov processes (Wn, Vn, εn)n≤0 and (W̃n, Ṽn, ε̃n)n≤0 are closely joinable.

Proof. We firstly construct a joining of (Vn, εn)n0≤n≤0 and (Ṽn, ε̃n)n0≤n≤0.
For i ∈ {0, 1, 3},

Pr(Vn = 1, εn = i) = 3|n| − 1
3|n|+1 <

1
3 .

Therefore, one can construct a joining of (Vn0 , εn0) and (Ṽn0 , ε̃n0) such that

{Vn0 = 1, εn0 = i} ⊂ {Ṽn0 = 1, ε̃n0 = i}

for i ∈ {0, 1, 3}.
Now, take some independent random variables Un0+1, . . ., U−1 having the U(0, 1) distribu-

tion, and such that the vector (Un0+1, . . . , U−1) is independent of (Vn0 , εn0) and (Ṽn0 , ε̃n0).
We recursively construct (Vn0+1, εn0+1), . . ., (V−1, ε−1) and (Ṽn0+1, ε̃n0+1), . . ., (Ṽ−1, ε̃−1) as

follows.
Once the construction is done up to time n, we set εn+1 = fn(Vn, Un+1) and ε̃n+1 = gn(Un+1)

where the functions fn and gn are defined as follows. We simply set fn(2, u) = 0. For i ∈
{0, 1, 3}, the function fn(1, ·) is such that fn(1, u) = i for u ∈ Ji where Ji is the set having
Lebesgue measure |Ji| = hn+1

hn
< 1

3 . We take a set J ′i ⊃ Ji such that |J ′i | = 1
3 and set gn(u) = i

for u ∈ J ′i . Thus, on the event {Vn = 1}, one has ε̃n+1 = i if εn+1 = i.
With this joining,

Pr
(
(Vn0+1, εn0+1) = (Ṽn0+1, ε̃n0+1), . . . , (VN , εN) = (ṼN , ε̃N) | Vn0 = 1

)
≥

N−1∏
n=n0

hn+1

hn
.

Now, we construct a synchronous joining
{ (Wn,Vn,εn)n0+1≤n≤N

(W̃n,Ṽn ,̃εn)n0+1≤n≤N
as follows. To initialize the

joining, we write Wn0 = f(Vn0 , U) where U is a U(0, 1) random variable independent of Vn0 ,
and we set W̃n0 = f(Ṽn0 , U) = f(1, U). Then we construct

{ (Wn,Vn,εn)n0+1≤n≤N

(W̃n,Ṽn ,̃εn)n0+1≤n≤N
with the joining{ (Vn,εn)n0+1≤n≤N

(Ṽn ,̃εn)n0+1≤n≤N
we previously constructed. In this way,

Pr
(
(Wn0+1, Vn0+1, εn0+1) = (W̃n0+1, Ṽn0+1, ε̃n0+1), . . . , (WN , VN , εN) = (W̃N , ṼN , ε̃N) | Vn0 = 1

)
= Pr

(
(Vn0+1, εn0+1) = (Ṽn0+1, ε̃n0+1), . . . , (VN , εN) = (ṼN , ε̃N) | Vn0 = 1

)
The lemma follows because the product ∏N−1

n=n0
hn+1
hn

is divergent as n0 → −∞ and Pr(Vn0 =
1)→ 1.
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