-
Calling a Haskell function in R - a float expansion example
2016-08-11
Source(latest update : 2016-08-23 13:32:08)
In the previous article, I wrote a R function returning the binary expansion of a real number \(u \in [0,1]\). In the present article, I will:
- write a similar function in Haskell;
- write this function in a way compatible with R, inside a module;
- compile this module in a dynamic linker suitable for R (
dllwith Windows,sowith Linux); - call the function from R through the dynamic linker.
The creation of a Haskell function compatible with R is allowed by the Foreign Function Interface (FFI), in other words the
Foreignmodule.I learnt how to do such things with the help of this blog post by Neil Mitchell.
Binary (and more) expansion in Haskell
Let’s go to Haskell. The
floatExpansionfunction below is obtained by a small modification of thefloatToDigitsfunction of theNumericpackage. It returns the expansion of a real number \(u \in [0,1]\) in a given integer base.import Numeric let floatExpansion :: RealFloat a => Integer -> a -> [Int]; floatExpansion base u = replicate (- snd expansion) 0 ++ fst expansion where expansion = floatToDigits base u floatExpansion 2 0.125 ## [0,0,1]First dynamic linker: string output
Firstly, I show how to make this function compatible with R when its output is a string instead of a list. It is easy to convert a list to a string in Haskell:
show [0, 0, 1] ## "[0,0,1]"To get the output as a vector in R, more work is needed, and I will do it in the next section.
Make the function compatible with R
To make the function compatible with R, there are two rules:
- Every argument must be a pointer (
Ptr) to a C compatible type:CInt,CDoubleorCString. - The result must be
IO ().
A value of type
Ptrrepresents a pointer to an object. This type is provided by theForeign.Ptrmodule, which is imported via theForeignmodule. The typesCInt,CDoubleandCStringare provided by theForeign.Cmodule.We end up with this module:
-- FloatExpansionString.hs {-# LANGUAGE ForeignFunctionInterface #-} module FloatExpansion where import Foreign import Foreign.C import Numeric foreign export ccall floatExpansionR :: Ptr CInt -> Ptr CDouble -> Ptr CString -> IO () floatExpansionR :: Ptr CInt -> Ptr CDouble -> Ptr CString -> IO () floatExpansionR base u result = do base <- peek base u <- peek u expansion <- newCString $ show $ floatExpansion (toInteger base) u poke result $ expansion floatExpansion :: RealFloat a => Integer -> a -> [Int] floatExpansion base u = replicate (- snd expansion) 0 ++ fst expansion where expansion = floatToDigits base uCompilation
We need the following C file to do the compilation, as explained in the GHC users guide.
// StartEnd.c #include <Rts.h> void HsStart() { int argc = 1; char* argv[] = {"ghcDll", NULL}; // argv must end with NULL // Initialize Haskell runtime char** args = argv; hs_init(&argc, &args); } void HsEnd() { hs_exit(); }Then we compile the library with the command:
ghc -shared -fPIC -dynamic -lHSrts-ghc7.10.3 FloatExpansionString.hs StartEnd.c -o FloatExpansionString.soThis creates the dynamic linker
FloatExpansionString.so.Call in R
We firstly load the library with:
dyn.load("FloatExpansionString.so") .C("HsStart") ## list()And we invoke the function with the help of the
.Cfunction, as follows:.C("floatExpansionR", base=2L, x=0.125, result="")$result ## [1] "[0,0,1]"It works. But it would be better to have a vector as output.
Second dynamic linker: vector output
To get the output as a vector, the additional modules we need are:
Foreign.R,Foreign.R.TypesandData.Vector.SEXP. They are provided by theinline-rpackage. The[Int]type of the output list of thefloatExpansionfunction must be converted to[Int32]. We write a simple functionintToInt32to help us to do the conversion. It works with the help of theData.Intmodule which is imported via theForeignmodule.We end up with this module:
-- FloatExpansion.hs {-# LANGUAGE ForeignFunctionInterface #-} {-# LANGUAGE DataKinds #-} module FloatExpansion where import Foreign import Foreign.C import Foreign.R (SEXP) import qualified Foreign.R.Type as R import qualified Data.Vector.SEXP as DV import Numeric foreign export ccall floatExpansionR :: Ptr CInt -> Ptr CDouble -> Ptr (SEXP s R.Int) -> IO () floatExpansionR :: Ptr CInt -> Ptr CDouble -> Ptr (SEXP s R.Int) -> IO () floatExpansionR base u result = do base <- peek base u <- peek u let expansion = map intToInt32 $ floatExpansion (toInteger base) u poke result $ DV.toSEXP $ DV.fromList expansion intToInt32 :: Int -> Int32 intToInt32 i = fromIntegral (i :: Int) :: Int32 floatExpansion :: RealFloat a => Integer -> a -> [Int] floatExpansion base u = replicate (- snd expansion) 0 ++ fst expansion where expansion = floatToDigits base uWe compile the library as before. And we load it in R as before:
dyn.load("FloatExpansion.so") .C("HsStart") ## list()And we invoke the function with the help of the
.Cfunction, as follows:.C("floatExpansionR", base=2L, x=0.125, result=list(0L))$result ## [[1]] ## [1] 0 0 1In fact, the output is a list with one element, the desired vector.
Let’s write a user-friendly function:
floatExpand <- function(x, base=2L){ .C("floatExpansionR", base=as.integer(base), x=as.double(x), result=list(integer(1)))$result[[1]] }Let’s compare it with my R function
num2dyadic:u <- runif(5000) system.time(lapply(u, floatExpand)) ## user system elapsed ## 0.146 0.003 0.148 system.time(lapply(u, num2dyadic)) ## user system elapsed ## 0.743 0.000 0.743It is faster. And I have checked that the two functions always return the same results.
Moreover the “RHaskell” function allows more than the binary expansion, for example the ternary expansion:
floatExpand(1/3+1/27, base=3) ## [1] 1 0 1Quite nice, isn’t it ?
